Script Independent Keyword Spotting Using Moment Features

Venu Govindaraju

Venu@cubs.buffalo.edu
Keyword Spotting for Multi-script Documents

OCR - Based

Query

Query Subsystem

Transliteration

Class Labels

Document Image Corpus

OCR Subsystem

Preprocessing

Recognition Hypotheses

Matching Subsystem

Match in Feature Space

Image – Based

Query Image Provided OR Rendered

Center for Unified Biometrics and Sensors
University at Buffalo - The State University of New York
Multi-script Documents

Challenge: Script Invariant Word Image Representation
Devanagari OCR
(Block Adjacency Graph)

Branching
Merging

Sample stroke
Graph representation

Segmentation Hypothesis

BAG of alphabets
BAG of conjunct character
Recognition Methodology

• Language model to choose path - results:
 – Script writing grammar rules eliminate two choices:
 – Phonetic n-gram constraints remove another choice:
Word Spotting (GSC)

Previous Work

 - Matching GSC features of two word images.

- Corpus:
 9312 word images (3104 for queries and 6208 for tests) from 776 individuals

- Performance
 Report GSC outperforms DTW

No. of Top Matches	Precision		Recall	
	GSC	DTW	GSC	DTW
1	0.9919	0.9156	0.00064	0.00059
5	0.9809	0.8845	0.00316	0.00285
10	0.9742	0.8658	0.00628	0.00558
20	0.9647	0.8419	0.01243	0.01085
50	0.9455	0.7997	0.03046	0.02576
100	0.9218	0.7556	0.05939	0.04869
500	0.7858	0.5906	0.25316	0.19025
1000	0.6553	0.4967	0.42221	0.32002
1552	0.54549	0.43450	0.54549	0.43450
2000	0.4817	0.3988	0.62075	0.51394
3000	0.3892	0.3423	0.75225	0.66165
4000	0.3308	0.3024	0.85246	0.77924
Word Spotting (DTW)

Previous Work

- **Sequential Profile and DTW**
 [Rath et al, CVPR 2003]
 - **Corpus**
 Washington’s manuscripts
 - **Performance**
 Average precision: 67.92%
 - **Query**
 Image and Text

Word recognition probability

\[
\text{Pr}(\text{wrd} \mid \text{fv}) = \frac{\sum \text{Pr}(\text{wrd}, \text{fv})}{\text{Pr}(\text{wrd}, \text{fv})}
\]
Word Spotting (Gabor)

Previous Work

- Template Free Word Spotting in low-quality manuscripts [Huaigu, et al, ICAPR 2007]
 - Matching Gabor features of two word images.
 - Corpus: 12 medical forms containing 5295 character images.

Performance

Report probabilistic similarity performs better than Euclidean and WMR.

Feature Extraction

\[V_w = [V_1^T \ V_2^T \ V_3^T \ V_4^T]^T \]

Probabilistic Similarity

\[C_P(w, V_w) = -\frac{1}{n} \sum_{i=1}^{n} \ln(P(c_i | v_i)) \]
Issues

• Deal with
 – Complex characters (Devanagari)
 – Scale and translation
 – Multiple scripts

• Structural Features (GSC)
 – Script specific therefore ineffective (Srihari et al)
 – Profile features applicable only on long components (Manmatha et al)
Moment Features

Geometric Moments

\[M_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^p y^q f(x, y) \, dx \, dy \] \hspace{1cm} (1)

\[M_{pq} = \sum_{X} \sum_{Y} x^p y^q f(x, y) \] \hspace{1cm} (2)

Center of Gravity

\[\bar{x} = \frac{M_{10}}{M_{00}}, \quad \bar{y} = \frac{M_{01}}{M_{00}}, \] \hspace{1cm} (3)

Central Moments

\[\bar{M}_{pq} = \sum_{X} \sum_{Y} (x - \bar{x})^p (y - \bar{y})^q f(x, y) \] \hspace{1cm} (4)

Variance

\[\sigma_x = \sqrt{\frac{\bar{M}_{20}}{M_{00}}}, \quad \sigma_y = \sqrt{\frac{\bar{M}_{02}}{M_{00}}}, \] \hspace{1cm} (5)

\[x^* = \frac{(x - \bar{x})}{\sigma_x}, \quad y^* = \frac{(y - \bar{y})}{\sigma_y}, \] \hspace{1cm} (6)
Moment Features

• Pre-processing of document images

• Moments (up to 7th order) extracted from normalized word images

• Invariant to scale and translations

\[\mathbf{m}_{pq} = \frac{\sum_X \sum_Y (x^*)^p (y^*)^q f(x, y)}{M_{00}} \]

(7)

Feature vector consists of 30 moment values
Construct for each word image and store in the index
Noise Sensitivity-High Order Moment Moments

Hindi Dataset

Average Precision vs higher order moments,
Apply relevance feedback to re-rank word images
Corpus

English: 707 handwritten word images extracted from IAM database and George Washington's historical manuscripts.

Hindi: 763 machine print word images extracted from Million Book Project documents.

Sanskrit: 693 machine print word images extracted from 5 documents downloaded from the URL: http://sanskrit.gde.to/
Corpus

• The test corpus consists of 5780 word images extracted from Million Book Project Documents.
Keyword Spotting

• ja.ngal → [-3060.48 , 710.86 , 480388.32 , -43156.29 ,]

• kabUtar → [31000.55 , 2774.74 , 496660.19 , 7229.75 , -]

• Vachan → [8208.35 , -2379.97 , 146283.25 , 4141.59 ,]

\[
SIM(q, w) = \frac{\vec{q} \cdot \vec{w}}{|\vec{q}| \ast |\vec{w}|}
\]

(8)
Cosine Similarity

<table>
<thead>
<tr>
<th>Pair</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0.9867</td>
<td>0.9932</td>
</tr>
<tr>
<td>B</td>
<td>0.9867</td>
<td>1</td>
<td>0.9467</td>
</tr>
<tr>
<td>C</td>
<td>0.9932</td>
<td>0.9467</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pair</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>1</td>
<td>0.9662</td>
<td>0.9312</td>
</tr>
<tr>
<td>E</td>
<td>0.9662</td>
<td>1</td>
<td>0.9187</td>
</tr>
<tr>
<td>F</td>
<td>0.9312</td>
<td>0.9984</td>
<td>1</td>
</tr>
</tbody>
</table>

A

Commonwealth

B Scale

Commonwealth

C Linear

D

लक्ष्मण

E scale

लक्ष्मण

F Linear

लक्ष्मण
Mean Average Precision

<table>
<thead>
<tr>
<th>Query</th>
<th>OCR</th>
<th>GSC</th>
<th>Gradient</th>
<th>Gabor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baba</td>
<td>0.62</td>
<td>0.8</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>Bandar</td>
<td>1.0</td>
<td>0.092</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Bhakt</td>
<td>0.75</td>
<td>0.52</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>Jungal</td>
<td>0.65</td>
<td>0.74</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Machali</td>
<td>0.79</td>
<td>0.93</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>Mata</td>
<td>0.63</td>
<td>0.35</td>
<td>0.38</td>
<td>1.0</td>
</tr>
<tr>
<td>Naksha</td>
<td>1.0</td>
<td>0.77</td>
<td>1.0</td>
<td>0.41</td>
</tr>
<tr>
<td>Raat</td>
<td>0.70</td>
<td>0.72</td>
<td>0.41</td>
<td>0.38</td>
</tr>
<tr>
<td>Ramkumar</td>
<td>1.0</td>
<td>0.89</td>
<td>0.22</td>
<td>0.24</td>
</tr>
<tr>
<td>Vachan</td>
<td>0.86</td>
<td>0.67</td>
<td>0.24</td>
<td>0.22</td>
</tr>
<tr>
<td>Mean for 10</td>
<td>0.80</td>
<td>0.65</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Mean for 20</td>
<td>0.67</td>
<td>0.60</td>
<td>0.29</td>
<td>0.29</td>
</tr>
</tbody>
</table>
Relevance Feedback

INDEXING

Word Features

Query Feature

Ranking

Feedback

query

results

Relevance

\[SIM(q, w) = \frac{\vec{q} \cdot \vec{w}}{|\vec{q}| \cdot |\vec{w}|} \] (8)

\[q_{new} = \gamma \cdot q_{old} + \frac{\alpha}{|R|} \cdot \sum_{i=1}^{\infty} d_i - \frac{\beta}{|NR|} \cdot \sum_{j=1}^{\infty} d_j \] (9)
Relevance Feedback on Vector Space

\[R_1 = [12333.37, -12148.82] \]

\[Q_{\text{new}} = [1288.43, -8450.10] \]

\[Q_1 = [-3060.48, 710.86] \]

\[NR_1 = [31000.55, 2774.75] \]

\[NR_2 = [8208.35, -2379.98] \]
Relevance Feedback

\[q_{new} = \gamma \cdot q_{old} + \frac{\alpha}{|R|} \cdot \sum_{i=1}^{i=R} d_i - \frac{\beta}{|NR|} \cdot \sum_{j=1}^{j=NR} d_j \]

(9)

\[
\begin{align*}
Q1 &= [-3060.48, 710.86] \\
R1 &= [12333.37, -12148.82] \\
NR1 &= [31000.55, 2774.75] \\
NR2 &= [8208.35, -2379.98]
\end{align*}
\]

Qnew = \(Q1 + 0.75 \times (R1) - (0.25/2) \times (NR1 + NR2) \)

Qnew = [1288.43, -8450.10]

Cosine Similarity (Q1, R1) = -0.8527

Cosine Similarity (Qnew, R1) = 0.8011
Average Precision

<table>
<thead>
<tr>
<th>Script</th>
<th>W/O Relevance Feedback %</th>
<th>Relevance Feedback %</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>66.30</td>
<td>69.20</td>
</tr>
<tr>
<td>Hindi</td>
<td>71.18</td>
<td>74.34</td>
</tr>
<tr>
<td>Sanskrit</td>
<td>87.88</td>
<td>92.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Script</th>
<th>GSC 50% Recall</th>
<th>Moments 50% Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>60.0</td>
<td>71.6</td>
</tr>
<tr>
<td>Sanskrit</td>
<td>90.0</td>
<td>94.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Script</th>
<th>Gabor</th>
<th>Moments</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>56.15</td>
<td>66.30</td>
</tr>
<tr>
<td>Hindi</td>
<td>67.25</td>
<td>71.18</td>
</tr>
<tr>
<td>Sanskrit</td>
<td>79.10</td>
<td>87.88</td>
</tr>
</tbody>
</table>
Average Precision Curves for Few Queries

- **English**: 8 queries
- **Sanskrit**: 100 queries
- **Hindi**: 75 queries

Average Precision

Graphs showing the average precision for English, Sanskrit, and Hindi queries.
Summary

• Keyword Spotting Methods
 – OCR driven
 – Image based: Moments, GSC, Gabor

• Multi-script Documents
 – Moments
 – Relevance Feedback

• Future Work